Dados ausentes em avaliações educacionais: comparação de métodos de tratamento

Autores

  • Luis Gustavo do Amaral Vinha Universidade de Brasília (UnB), Brasília, Distrito Federal, Brasil
  • Jacob Arie Laros Universidade de Brasília (UnB), Brasília, Distrito Federal, Brasil

DOI:

https://doi.org/10.18222/eae.v0ix.3916

Palavras-chave:

Tratamento de Dados Ausentes, Avaliação da Educação, Desempenho Acadêmico, Simulação.

Resumo

Os dados ausentes são comuns nas avaliações educacionais. Por isso, o uso de métodos adequados torna-se fundamental para reduzir o impacto da perda de informação. O objetivo deste estudo é comparar o desempenho de quatro métodos de tratamentos de dados ausentes (imputação pela média, listwise deletion, máxima verossimilhança e imputação múltipla), tendo como base o uso de modelos de regressão aplicados aos dados da avaliação educacional realizada no estado do Ceará. Foram utilizadas informações de 7.000 estudantes, simulando-se diversos cenários de acordo com o percentual e o tipo de ausência. A imputação pela média apresentou o pior desempenho em todos os cenários simulados e os demais métodos mostraram resultados semelhantes entre si. Verificou-se ainda que o uso de variáveis auxiliares na estimação por máxima verossimilhança e imputação múltipla reduziu o viés das estimativas de parâmetros importantes do modelo quando a ausência simulada não é ao acaso.

Downloads

Não há dados estatísticos.

Biografia do Autor

Luis Gustavo do Amaral Vinha, Universidade de Brasília (UnB), Brasília, Distrito Federal, Brasil

Doutor em Psicologia Social pela Universidade de Brasília e Mestre em Estatística pela Universidade de São Paulo

Professor Adjunto do Departamento de Estatística da Universidade de Brasília

Jacob Arie Laros, Universidade de Brasília (UnB), Brasília, Distrito Federal, Brasil

Doutor PhD em Psicologia pela University of Groningen

Professor Associado do Instituto de Psicologia da Universidade de Brasília.

Referências

BARALDI, Amanda N.; ENDERS, Craig K. An introduction to modern missing data analyses. Journal of School Psychology, Amsterdam, v. 48, p. 5-37, 2010.

BUCK, S. F. A method of estimation of missing values in multivariate data suitable for use with an electronic computer. Journal of the Royal Statistical Society, Series B, London, v. 22, n. 2, p. 302-306, 1960.

CEARÁ. Secretaria da Educação. SPAECE – 2011. Matemática, 3º ano: ensino médio. Fortaleza: SEE, UFJF, 2011. p. 1-22. (Boletim Pedagógico, v. 3).

CHEEMA, Jehanzeb R. A review of missing data handling methods in education research. Review of Educational Research, Thousand Oaks, CA, v. 20, n. 10, p. 1-20, 2014.

COHEN, Jacob; COHEN, Patricia. Applied multiple regression and correlation analysis for the behavioral sciences. Hillsdale, NJ: Erlbaum, 1985.

COLLINS, Linda M.; SCHAFER, Joseph L.; KAM, Chi-Ming. A comparison of inclusive and restrictive strategies in modern missing-data procedures. Psychological Methods, Washington, v. 6, n. 4, p. 330-351, 2001.

COX, Bradley E. et al. Working with missing data in higher education research: a primer and real world. The Review of Higher Education, Baltimore, v. 37, n. 3, p. 377-402, Spring 2014.

CRONINGER, Robert G.; DOUGLAS, Karen M. Missing data and institutional research. In: UMBACH, P. D. (Ed.). Survey research: emerging issues of technology, policy, and analysis. San Francisco: Wiley Interscience Periodicals, 2005. p. 33-49.

ENDERS, Craig K. The performance of the full information maximum likelihood estimator in multiple regression models with missing data. Educational and Psychological Measurement, Thousand Oaks, CA, v. 61, n. 5, p. 713-740, 2001a.

ENDERS, Craig K. The impact of nonnormality on full information maximum-likelihood estimation for structural equation models with missing data. Psychological Methods, Washington, v. 6, n. 4, p. 352-370, 2001b. ENDERS, Craig K. Applied missing data analysis. New York: Guilford, 2010.

FITZMAURICE, Garret et al. Longitudinal data analysis. Boca Raton: Chapman & Hall, 2009.

GRAHAM, John W. Missing data analysis: making it work in the real world. Annual Review of Psychology, Palo Alto, CA, v. 60, p. 549-576, 2009.

GRAHAM, John W.; OLCHOWSKI, Allison E.; GILREATH, Tamika D. How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science, Berlin, v. 8, p. 206-213, 2007.

LANGKAMP, Diane L.; LEHMAN, Amy; LEMESHOW, Stanley. Techniques for handling missing data in secondary analyses of large surveys. Academic Pediatrics, Amsterdam, v. 10, n. 3, p. 205-210, maio/jun. 2010.3031

MACEDO, Glaucia Alves. Fatores associados ao rendimento escolar de alunos da 5ª série (2000): uma abordagem longitudinal do valor adicionado e da heterogeneidade. 2004. 212f. Dissertação (Mestrado em Demografia) – Faculdade de Ciências Econômicas, Universidade Federal de Minas Gerais, Belo Horizonte, 2004.

MCKNIGHT, Patrick E. et al. Missing data: a gentle introduction. New York: Guilford Press, 2007.

OLIVEIRA, Pedro Rodrigues; BELLUZZO, Walter; PAZELLO, Elaine Toldo. The public–private test score gap in Brazil. Economics of Education Review, Amsterdam, v. 35, p. 120-133, 2013.

PEUGH, James L.; ENDERS, Craig K. Missing data in educational research: a review of reporting practices and suggestions for improvement. Review of Educational Research, Thousand Oaks, CA, v. 74, n. 4, p. 525-556, Winter 2004.

RODRIGUES, Clarissa Guimarães; RIOS-NETO, Eduardo Luiz Gonçalves; PINTO, Cristine Campos de Xavier. Diferenças intertemporais na média e distribuição do desempenho escolar no Brasil: o papel do nível socioeconômico, 1997-2005. Revista Brasileira de Estudos de População, Belo Horizonte, v. 28, n. 1, p. 5-36, jan./jun. 2011.

ROSE, Roderick A.; FRASER, Mark W. A simplified framework for using multiple imputation in social work research. Social Work Research, Oxford, v. 32, n. 3, p. 171-178, 2008.

ROUSSEAU, Michel et al. Reporting missing data: a study of selected articles published from 2003-2007. Quality & Quantity, Berlin, v. 46, n. 5, p. 1393-1406, 2012.

RUBIN, Donald B. Inference and missing data. Biometrika, Oxford, v. 63, n. 3, p. 581-592, 1976.

RUBIN, Donald B. Multiple imputation for nonresponse in surveys. New York: Wiley, 1987.

SAVALEI, Victoria; BENTLER, Peter M. A two-stage approach to missing data: theory and application to auxiliary variables. Structural Equation Modeling, London, v. 16, n. 3, p. 477-497, 2009.

SCHAFER, Joseph L.; GRAHAM, John W. Missing data: our view of the state of the art. Psychological Methods, Washington, v. 7, n. 2, p. 147-177, 2002.

SOARES, José Francisco; ALVES, Maria Teresa Gonzaga. Desigualdades raciais no sistema brasileiro de educação básica. Educação e Pesquisa, São Paulo, v. 29, n. 1, p. 147-165, jan./jun. 2003.

VINHA, Luís Gustavo do Amaral. Estudos longitudinais e tratamento de dados ausentes em avaliações educacionais. 2016. 124f. Tese (Doutorado em Psicologia Social, do Trabalho e das Organizações) – Instituto de Psicologia, Universidade de Brasília, Brasília, 2016.

WILKS, S. S. Moments and distributions of estimates of population parameters from fragmentary samples. The Annals of Mathematical Statistics, New York, v. 3, p. 163-195, 1932. 312

XERXENEVSKY, Lauren Lewis. Programa Mais Educação: avaliação do impacto da educação integral no desempenho de alunos no Rio Grande do Sul. 2012. 143f. Dissertação (Mestrado em Economia do Desenvolvimento) – Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, 2012.

YOUNG, Rebekah; JOHNSON, David. Methods for handling missing secondary respondent data. Journal of Marriage and Family, New Jersey, v. 75, n. 1, p. 221-234, 2013.

Downloads

Publicado

23-04-2018

Como Citar

Vinha, L. G. do A., & Laros, J. A. (2018). Dados ausentes em avaliações educacionais: comparação de métodos de tratamento. Estudos Em Avaliação Educacional, 29(70), 156–187. https://doi.org/10.18222/eae.v0ix.3916

Edição

Seção

Artigos